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It is well known that the interactions between coherent monochromatic radiation and a scattering medium
induce a speckle phenomenon. The spatial and temporal statistics of this speckle are employed to analyze many
applications in laser imaging. The direct exposure of a photographic film, without a lens to the backscattered
radiation, gives a speckle pattern. The main problem lies in the determination of those parameters which can
efficiently characterize this pattern. In this paper, we present a fractal-theory-based stochastic approach to
approximate the diffusion. In our opinion, this method is more appropriate for the classification of this non-
linear and nonstationary phenomenon than the classical frequency-based approach. The paper also presents
several applications of this method which have employed for characterization of different test media.
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I. INTRODUCTION

Speckle, which is an interference phenomenon, appears
when a spatially coherent light interacts with a rough surface
or propagates itself in a random medium. Such a phenom-
enon can be observed in many physical applications—e.g.,
microscopic images, stellar images, and others. There are
two approaches of taking speckle into consideration. In one
approach, speckle can be considered as a noisy phenomenon
that pollutes observations. Hence the objective is to try to
suppress it, as far as practicable. In another approach, one
can consider that it contains a lot of information about the
system under observation. The choice between these two
points of view depends on the specific application—e.g., in
our case, biomedical imagery. A systematic study of the sta-
tistical properties of the speckle was undertaken to investi-
gate the classification of speckle in the context of particular
dermatological pathologies. Figure 1 shows a speckle pattern
produced by the laser illumination on a scattering medium.
Its temporal and spatial characteristics depend on many fac-
tors; some of these are experimental factors—e.g., the wave-
length, spectral bandwidth, or polarization of the illuminat-
ing radiation, which can be seen below. On the other hand,
the characteristics of the speckle will also depend on some
physical factors which are due to the properties of the ob-
served media—e.g., texture, roughness, material, shape, and
so on. As speckle is an interference and diffraction phenom-
enon, the frequency-based approach to study its behavior,
through Fourier optics, is frequently undertaken[1–3]. Gold-
fischer [2] first investigated the statistical properties of the
speckle employing the power spectral density and its auto-
correlation function. The first- and second-order statistics of
the speckle[4] allow many applications in imagery[5].
Many researchers have also explored the relationships be-
tween the speckle dimensions and the experimental condi-
tions [6–8]. More recently, the utility of the third-order

intensity correlations has been investigated for several differ-
ent applications. For example, Genack and Drake[9] devel-
oped an expression for the correlation of two speckle fields at
different frequencies and Websteret al. [10] successfully em-
ployed the third-order correlation to obtain the temporal re-
sponse of a random medium.

In this paper, we present an original and general approach
of the speckle pattern through the fractal theory. Our main
research interest is to study the diffusion of light in human
skin. In a spatial and dynamic study, the frequency-based
approach cannot be a natural choice as the speckle observed
is totally stochastic in nature. Hence a fractal-theory-based
stochastic approach is presented in this paper, which can be
efficiently employed in these situations. Using this approach,
one can extract the parameters of the speckle texture—e.g.,
fractal dimension, statistical distribution of the grains of
speckle, and multiscale correlation in the image. The present
paper is organized as follows. In Sec. II, we detail the statis-
tics of speckle that may be correlated with Brownian motion
theory. Section III describes our fractal approach for the
characterization of the speckle. Section IV is devoted to the
presentation of the experimental setup, which has been em-
ployed in our laboratory to acquire the speckle. In Sec. V, a
detailed description of the results achived by employing our
method on test media consisting of solutions made of latex
balls are presented. Finally, conclusions are presented in
Sec. VI.

*Electronic address: Guyot@univ-paris12.fr FIG. 1. The speckle pattern of a scattering medium.
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II. STATISTICS OF THE SPECKLE AND THE
CORRELATION WITH BROWNIAN MOTION THEORY

A. Amplitude, phase, and intensity statistics

Let us consider a monochromatic electric field(frequency
n0)

Usx,y,z,td = Asx,y,zdexps j2pn0td. s1d

In the first-order statistics, the amplitude at one point in
space is the sum of all out-of-phase contributions from many
points of the scattering array. Hence, the amplitude can be
given as

Asx,y,zd =
1

ÎN
o aksx,y,zd =

1
ÎN

o uakuexp jwk. s2d

As a result, the amplitude may be considered as a random
walk in the complex plan.

Moreover, the following theoretical hypotheses should
also be considered.

(i) The amplitudeak/ÎN and phasewk of the kth contri-
bution are statistically independent and they are statistically
independent compared to the others too.

(ii ) The phaseswk of the contributions are uniformaly dis-
tributed onf0;2pg.

Thus, from these hypotheses, Goodman[11] developed
the probability density function[see Eq.(3)] for the real and
imaginary parts of the field(employing the central limit
theorem):

PsAsrd,Asidd =
1

2ps2 expH−
fAsrdg2 + fAsidg2

2s2 J , s3d

with

s2 = lim inf
1

N o kuaku2l
2

. s4d

So it is important to keep in mind that the amplitude con-
forms to a complex circular Gaussian statistic. Hence, the

probability density function of the intensity in Eq.(5) can be
expressed as

PsId =
1

2s2 expS−
I

2s2D . s5d

Equation(6) describes the behavior of the phase:

Psud =
1

2p
. s6d

It can be noted that there is an exponential decrease in the
absolute intensity. Hence, the probability density function of
the intensity detected by the camera is

PsIdd = S n0

kIl
Dn0 Id

n0−1

Gsn0d
expS−

n0Id

kIl
D . s7d

Heren0 may be interpreted as the number of speckle grains
seen by the camera. Thus, this density evolves from an ex-
ponential of a Gaussian function whenn0→`. The
frequency-based approach is considered next.

B. Power spectral analysis

To keep this discussion concise, we only present the
power spectral densities of several speckle patterns in Fig. 2.
These results validate, partially, our approach based on
Brownian motion theory. Some of the frequency-based ap-
proaches considered so far by researchers can be found in the
literature[2,4]. It is very important to note that the speckles
present a 1/fb process for high frequencies. This type of a
process is characteristic of an autosimilar process.

III. STOCHASTIC MODELING OF THE SPECKLE

For the sake of clarity, the model of one-dimensional
Brownian motion is presented first and then it is extended to
the two-dimensional case, for applications to speckle.

A. Brownian motion theory

Brownian motion(BM) is known as a Wiener process,
observed for the first time by Brown in 1827. Brownian mo-

FIG. 2. Experimental spectral power densities(in logarithm) of the speckle patterns shown in Fig. 7 as a function of the logarithm of the
frequencies(arbitrary unities).
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tion is a continuous but not derivable process, and its vari-
ance is proportional to the difference in time, as in Eq.(8)
betweent1 and t2:

s2 = VarfXst2d − Xst1dg ~ ut2 − t1u. s8d

B. Generalization to fractional Brownian motion (FBM)

It is possible to generalize Brownian motion theory to all
types of processes as expressed by Mandelbrot[12]. This
extension has evolved from a previous statistical study by
Hurst [13] on the existence of a long-range statistical depen-
dence in a chaotic process. So the variance of a FBM process
verifies the following:

VarfXst2d − Xst1dg ~ ut2 − t1u2H, s9d

with H e f0,1g. The relation between the variance andDt [cf.
Eq. (10)] is known as the diffusion function. One can make
an estimate of the Hurst coefficient employing the following
equation:

FDszd = EhuXst + Dtd − Xstdu2j ~ uDtu2H, s10d

where Eh j stands for the mathematical expectation. In the
log scale, the Hurst coefficient can be easily estimated from
the slope of the plot of the graphical representation of the
diffusion function in the log scale:

log FDsDtd = K + 2H loguDtu. s11d

More detailed description on the diffusion function are
given by Chiariet al. [14]. Now, the model of the FBM can
be extended to the two-dimensional case and the specific of
modeling the diffusion function can be undertaken, in case of
the speckle pattern for the extraction of stochastic param-
eters, necessary for the classification of the speckle.

C. Random walk approach to spatial patterns
of speckle intensity

Our starting point is the temporal relation of Eq.(10). Our
objective is to apply this fractal formalism to our speckle
images. To this end, we interpret spatial coordinates as time
coordinates. Letr denote the position on a stripe of a speckle
image andXsrd the speckle intensity. Then, we replace tem-
poral parameters by spatial parameters:Xstd to Xsrd and
Xst+Dtd−Xstd to usDrd=Xsr +Drd−Xsrd. Figure 3 shows the
distribution Psu,Drd for several distancesDr. Furthermore,
Eqs.(10) and (11) become

FDsDrd = EhuXsr + Drd − Xsrdu2j ~ uDr u2H

log FDsDrd = K + 2H loguDr u. s12d

D. Extension of the FBM in two dimensions

In order to extent our analysis in two dimensions(2D), we
describe speckle patterns by the coordinatesx and y and
generalize Eq.(12) to

FDxsDxd = EhuXsx + Dxd − Xsxdu2j ~ uDxu2Hx,

FDysDyd = EhuXsy + Dyd − Xsydu2j ~ uDyu2Hy. s13d

This replacement is possible because the images are consid-
ered row by row and column by column and it can therefore
be assumed that the observed image is globally symmetric.
However, our proposed model is not valid when the disper-
sion of measurements is too high, because we use the aver-
age of these measurements. Fortunately, the symmetry of the
speckle for our application depends on experimental condi-
tions. Further work in future will present this treatment in

FIG. 3. Experimental distributions(for several values ofDr: 4, 8, 16, 32, 128, 256) of the intensity(speckle pattern showed in Fig. 1).
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polar coordinates and will aim at solving this problem. From
another point of view, we can see later that this treatment
makes it possible to verify isotropy in the speckle image. Let
us consider an example for easy understanding of the pro-
posed model. Let us first apply Eq.(13) to the image ac-
quired in Fig. 1.

The results obtained for this example under consideration
are shown, in log-log scale in Fig. 4. These results corre-
spond to

log FDsDxd = Kx + 2Hx loguDxu,

log FDsDyd = Ky + 2Hy loguDyu. s14d

Before we discuss the method employed to extract param-
eters from these curves, they can be systematically analyzed.
These curves represent the evolution(in log scale) of the
variance as function of pixels in the image. It may be noted
too that the frequency-based approach may be recovered em-
ploying this notion of neighborhood on thex axis. Each
curve can be considered to be composed of two parts: a
“linear part,” in which the average variance seems to in-
crease linearly in the range of relatively small scales, and a
so-called “saturation part,” in which the variance is nearly
constant. An observation of Fig. 4 and its mathematical ex-
pressions[Eq. (14)] will reveal thatHx andHy can be easily
determined from the slope of the curves in the linear part.
Due to this linear property, this portion of the curve indicates
the self-similarity property of the observed process, the satu-
ration value of the average variance, and the critical scale at
which the saturation appears. These parts of the curves are
the most interesting ones for characterization of the fractal.
Once the significance of the curves is explained, the expla-
nations for the extraction of the parameters are presented
next.

E. Adaptation of the FBM model to the speckle

The application of a fractal model to a real phenomenon
needs a suitable adaptation. In the particular case of the
speckle, it has been shown in Sec. II B that the experimental
speckle undergoes a linear decrease in its power spectral
density for high frequencies. This fact confirms that the
speckle presents the property of the autosimilarity, only for

the high frequencies. So, from the fractal theory[15], we can
affirm that this process undergoes an autocorrelation function
of the type

Cf f = s2 exps− luDxu2Hd, s15d

with s2 the variance of the process. This enables us to ex-
plicitly determine the form of the equation of diffusion. We
start from Eq.(13):

EhuXsx + Dxd − Xsxdu2j = 2kX2sxdl − 2Cf f . s16d

So, after centering the process, we obtain

EhuXsx + Dxd − Xsxdu2j = 2s2s1 − exp −luDxu2Hd. s17d

This form of the equation of diffusion represents the final
form of this fractal model. Here, one can draw an analogy
with the theoretical-physics-based approaches used for these
diffusion curves introduced by Francket al. [16]. Thus,
Fokker-Planck theory shows that we can express a nonlinear
model as

FDxsDxd = Gxf1 − exps− lxuDxu2Hxdg,

FDysDyd = Gyf1 − exps− lyuDyu2Hydg. s18d

Three parameters provide excellent precision as demon-
strated in Fig. 5. From this formulation, we obtain the satu-
ration of the variance(Gx andGy equal to 2s2). The corre-
sponding characteristic size of the speckle structure can be
evaluated too, usinglx and ly [cf. Eq. (19)], as found by
Fournier[17]:

Sx =
p

lx
,

Sy =
p

ly
. s19d

Once these formulations are properly carried out, it is also
possible to determine at the Hurst coefficient. It can be easily
shown that, forDx!Sx andHx.0.5, Eq.(18) becomes

FDxsDxd ~ uDxu2Hx s20d

and similarly we can determine forFDy
.

FIG. 4. Log-log graphical representation(ar-
bitrary unity) of the speckle diffusion function of
the speckle pattern shown in Fig. 1(in bothx and
y directions, respectively).
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Finally, three stochastic parameters are needed to com-
pletely characterize the speckle pattern:H, the Hurst param-
eter;G (or Var), which represents the saturation of the vari-
ance; andS, the characteristic size of the autosimilar element
in the image.

IV. EXPERIMENTAL SETUP

Figure 6 presents our experimental setup. It is comprised
of the following.

(i) A nonpolarized laser He-Nes632.8 nmd with approxi-
mately 5 mW of power. This wavelength corresponds ap-
proximately to the maximum transparency of biological tis-
sues.

(ii ) A scattering medium composed of a solution of latex
balls.

(iii ) A Texas Instrument TC-255 charge-coupled-device
(CCD) camera with 3363244 pixels. The sensor has the
following characteristics: each pixel measures 10310 mm,
its capacity is about 62 500 electrons, and its dynamics is
66 dB. The sensitivity of the camera is 5310−4 lux and ex-
posure time for capturing the speckle was 10 ms for our
acquisition.

(iv) In our work theEDITIM1 software was employed,
which is equipped with many image processing
capabilities—e.g., correction of the thermal noise by sub-
tracting a “black” image to each acquisition.

(v) Two linear polarizers at the input/output of the device.

The accuracy of the measurement is maximized by the
simplicity of this device. The CCD sensor is directly exposed
to the backscattered radiation, without using a lens. The ex-
posure time is set to 10 ms. The sample-sensor distance
s30 cmd is maintained constant for all acquisitions. Theoreti-
cally, the minimum speckle size for this distance is about
50 mm. This distance was optimized so we could acquire
several pixels per speckle grain and retain the global statis-
tics of the speckle. Thus, each speckle of our media is re-
corded under identical conditions. A detailed description of
the experimental setup is given now.

Linear polarizers were placed at the input/output of the
device. Our acquisitions were all performed with two con-
figurations of these polarizers. The incident light was linearly
polarized. According to Bicout and Brosseau[18], one can
observe an exponential loss of polarization following diffu-
sion events. Hence, the photons that originate from the bulk
after diffusion are statistically more depolarized than the
photons that originate from the surface of the observed me-
dium. Thus, when the output polarizer is placed perpendicu-
larly to the input one, we have the privilege of observing the
speckle which originates from the volume. Conversely, when
both polarizers are parallel, we can observe the surface
speckle.

In the next section, we present the application on our test
media.

V. RESULTS

In our work, we have considered the test media as solu-
tions of 812-nm-(with standard deviation of 0.015mm) di-
ameter latex balls with several concentrations. This diameter
corresponds to the size of the main diffusers of human skin.
The concentrations are kept at 1%, 5%, and 10% in those
balls. The speckle is captured using both the configurations
of the input/output polarizers. For each configuration, 20 ac-
quisitions were undertaken. Then, we compare the mean pa-
rameters, which depend on thex and y directions, the con-
centration in latex balls, and the position of the polarizers.
The results obtained from an analysis of the variance enables
us to discuss the significancep of the measurements. Ex-
amples of the speckles to be characterized are shown in Fig.

FIG. 5. Regression of the diffusion function
(in the x direction) with the nonlinear model
(same medium as data presented in Fig. 1).

FIG. 6. Experimental setup.
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7. The first row shows the speckles for the three concentra-
tions (1%, 5%, and 10%, respectively) with the polarizers in
perpendicular configuration. The second row corresponds to
the parallel configuration of the polarizers.

A. Fokker-Planck model

The results obtained with the model are shown in Fig. 8
and are summarized in Table I.

1. Evolution of the first parameter: Hurst coefficient H

This parameter is not significant for each configuration
sp.0.05d. Furthermore, this cannot be utilized to character-
ize the speckle in this application. This can be explained by
the fact that in this continuous model,H represents the Hurst
coefficient at small scales. Only high frequencies contribute
to its value. It therefore seems interesting to note the constant

FIG. 7. The speckles of several media.

FIG. 8. The evolution of the fractal parameters according to concentration.(a) Perpendicular configuration of polarizers in thex direction,
(b) perpendicular configuration of polarizers in they direction, (c) parallel configuration of polarizers in thex direction, and(d) parallel
configuration of polarizers in they direction.
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nature of the fractal dimension of the speckle when only high
frequencies are considered.

2. Evolution of the second parameter:
Saturation of variance Var

One can foresee the saturation of this parameter with con-
centration. TheX and Y directions present nearly the same
results for all configurations. When the input/output polariz-
ers are parallel, this parameter gives a significant character-
ization of the various concentrationssp,0.0001d. In the per-
pendicular configuration of the polarizers, the difference
between 5% and 10% concentration is not significant
sp.0.05d. It is interesting to note that, for each concentra-
tion, we may observe differencessp,0.01d between parallel
and perpendicular configurations of the polarizers.

3. Evolution of the third parameter:
Size of the characteristic elements S

This parameter presents significant difference between the
concentrations in all the configurationssp,0.01d except for
5% concentration where differences between perpendicular
and parallel polarizer configurations are not significant
sp.0.05d. It was also noted that differences betweenX and
Y directions are not significantsp.0.05d for 1% concentra-
tion in the parallel configuration of the polarizers.

A detailed discussion on our results should be useful to
clarify the usefulness and limits of our model.

B. Discussion

The proposed model showed interesting results.
When applied to our test media, the model does not show

any significant difference for different configurations of the
polarizers. As explained earlier, polarization is used to filter
the speckle. In the perpendicular configuration of the polar-
izers, we observe the speckle that originates from the bulk,
opposed to the speckle which originates from the surface,
observed in the parallel configuration of the polarizers. No
significant difference could be observed between these con-
figurations and we could not, therefore, discriminate surface
speckle from volume speckle. This can be explained from the
fact that our test media had only one phase. Further work in
the future will be devoted to the discrimination between sur-

face and volume speckles in a multilayer medium. The three
models showed no great difference betweenX andY direc-
tions either. Only a little anisotropy in our measurement
could be observed due to the symmetry of the experimental
setup employed.

Our next discussion encompasses our main research inter-
est described in this paper—i.e., the evolution of the fractal
parameters with the concentration of the media. We observed
an increase of the parameters with the concentration of latex
balls in the test media. However, we could also foresee a
saturation phenomenon of the discrimination with the con-
centration. It seems difficult to evaluate the limits of the
discrimination with this fractal method. Nevertheless, the
characteristic size of the structuring element appears to be
the most discriminating parameter. This parameter presents a
positive correlation with the concentration and increases
when the concentration increases. Finally, the fractal ap-
proach can be used to discriminate the speckle obtained in
backscattering.

VI. CONCLUSIONS

In this paper, we present a novel method for the study of
the speckle statistics. This method, based on Brownian mo-
tion theory, is more powerful than the classical frequency-
based approach, because of its multiresolution and multiscale
properties. In our view, the fractal approach seems more ap-
propriate to study a nonstationary and nonlinear phenomenon
such as the speckle of a multiscattering medium. Hence, we
first presented our fractal approach based on the fractional
Brownian motion theory. This led us to the diffusion func-
tion, which contains the fractal information on the medium
observed. Second, we implemented the model necessary for
the exploitation of the diffusion function. Hence, the details
of the experimental setup were presented and we applied the
fractal formulation to the images obtained in backscattering
from test media. The test media were composed of latex balls
in solution. It could be observed that fractal parameters such
as the Hurst coefficients, characteristic size of structuring
element, and saturation of variance enabled us to character-
ize the observed medium. Further work will be carried out to
determine the limits of these methods. We hope to generalize

TABLE I. Results of the Fokker-Planck model.

Concentration 1% Concentration 5% Concentration 10%

Configuration ' i ' i ' i

Direction x y x y x y x y x y x y

Variance 2.30 2.21 3.18 3.15 3.68 3.68 3.55 3.56 3.77 3.73 4.21 4.21

sGd ±0.18 ±0.17 ±0.16 ±0.15 ±0.06 ±0.08 ±0.35 ±0.39 ±0.05 ±0.07 ±0.06 ±0.08

Characteristic size 3.97 5.51 4.47 4.57 11.48 12.10 11.32 13.07 13.33 14.08 14.72 15.60

(pixels) ±0.25 ±0.27 ±0.25 ±0.18 ±0.38 ±0.48 ±0.50 ±0.70 ±0.47 ±0.70 ±0.71 ±0.70

Hurst’s coefficients 0.83 0.72 0.75 0.77 0.85 0.83 0.85 0.85 0.86 0.83 0.87 0.85

sHd ±0.02 ±0.02 ±0.02 ±0.04 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02
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the study of speckle patterns employing fractal theory to
characterize, discriminate, or classify any scattering medium
using its speckle. Fractal theory has a broad spectrum and
can be used in a statistical approach, as presented in this
paper, as well as in a structural approach, which we intend to
present in another paper. It is sincerely hoped that useful
applications will be possible in biomedical imagery and
more precisely in dermatology, where several pathologies
could be detected at an early stage. Indeed, many pathologies
cause modifications of the optical properties of the skin, and

it should therefore be possible to detect them utilizing the
speckle phenomenon.
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